kuleuven ©eavise

User-friendly Probabilistic Decision Logic Modeling

Simon Vandevelde
28/08/2023

Aim of presentation

- Highlight role of uncertainty in decision making
- Show that DMN is a great foundation for user-friendly probabilistic modeling

Introduction

- Simon Vandevelde
- PhD student @ CS, KU Leuven university, Belgium
- Research on symbolic AI
- Specific focus on user-friendliness
- How do we make knowledge-based systems more accessible?
- DMN is obviously of interest

Introduction

Introduction

Context

- DMN from a more theoretical viewpoint

Context

- DMN from a more theoretical viewpoint - but still practically applied

Context

- DMN from a more theoretical viewpoint - but still practically applied
- DMN-IDP ${ }^{1}$: Do more with DMN

Context

- DMN from a more theoretical viewpoint - but still practically applied
- cDMN²: Extend DMN with constraints

Doctor works max. 1 shift per day				
E *	Doctor	Day	nb shifts of Doctor on Day	
1	-	-	≤ 1	

Group size		
E^{*}	Group	number in Group
1	-	$[16,19]$

Context

- DMN from a more theoretical viewpoint - but still practically applied
- How to properly handle unknown values?

Salutation				
U	Gender	MStatus	Salut	
1	Male	-	Mr	
2	Female	Married	Mrs	
3	Female	Single	Ms	

(c) Salutation decision table

Context

- DMN from a more theoretical viewpoint - but still practically applied
- How to properly handle unknown values?
- Undefined is not unknown!

Salutation				
U	Gender	MStatus	Salut	
1	Male	-	Mr	
2	Female	Married	Mrs	
3	Female	Single	Ms	

(c) Salutation decision table

Context

- DMN from a more theoretical viewpoint - but still practically applied
- pDMN: how to elegantly incorporate probabilities?

Uncertainties

- Life is inherently uncertain
- Will it rain?
- How much traffic will there be?
- Will the medicine be effective?
- Massive shift to learning/predicting from data: these are all (un)certainties!

Probabilities can be "forced" into DMN

Umbrella		
U	Rain	Umbrella
1	Certainly	Yes
2	Maybe	Yes
3	Definitely Not	No

Probabilities can be "forced" into DMN

Umbrella		
U	Rain	Umbrella
1	Certainly	Yes
2	Maybe	Yes
3	Definitely Not	No

Umbrella			
U	Probability of Rain	Umbrella	
1	>30	Yes	
2	≤ 30	No	

kuleuven @eavise

Probabilities can be "forced" into DMN

- Very rigid
- Table "hides" the probability
- You cannot express probability on input value
- E.g., a dice has a chance of $1 / 6$ to be $1,2, \ldots$

Umbrella		
U	Rain	Umbrella
1	Certainly	Yes
2	Maybe	Yes
3	Definitely Not	No

Umbrella			
U	Probability of Rain	Umbrella	
1	>30	Yes	
2	≤ 30	No	

- Extend DMN with probabilities:
- Elegantly, in DMN-like way
- Presence of probability should be clear
- Reason on them throughout entire model!
- Build an inference engine for this notation
- DMN extension for probabilistic logic
- DMN is a great foundation!
- User-friendly, readable
- Table-based format, very intuitive

Note: we do advocate for adding probabilities to official DMN standard, but want to point out that it forms an excellent foundation for a probabilistic notation.

pDMN: glossary

- Symbols can have arity n
- i.e., functions and predicates are possible
- Must be declared in glossary

pDMN: decision tables
- pDMN extends decision tables with three new concepts

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities

Burglary	
U	burglary
	Yes
1	0.7

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities

Burglary	
U	burglary
	Yes
1	0.7

Alarm			
U	burglary	earthquake	alarm
			Yes
1	Yes	heavy	0.9
2	Yes	mild	0.85
3	Yes	none	0.8
4	No	mild	0.1
5	No	heavy	0.3

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities
- Ch (oice) hit policy

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities
- Ch(oice) hit policy

Earthquake			
Ch	earthquake		
	heavy	mild	none
1	0.01	0.19	0.8

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities
- Ch(oice) hit policy

Earthquake				
Ch	earthquake			
	heavy	mild	none	
1	0.01	0.19	0.8	

Throwing Dice		die value					
Ch	biased						
		one	two	three	four	five	six
1	No	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
2	Yes	0.1	0.1	0.1	0.1	0.1	0.5

kuleuven ©eavise

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities
- Ch(oice) hit policy
- Quantification (for every)

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities
- Ch(oice) hit policy
- Quantification (for every)

Calls		
U	alarm	X calls
		Yes
1	Yes	0.8
2	No	0.1

pDMN: decision tables

- pDMN extends decision tables with three new concepts
- Probabilities
- Ch(oice) hit policy
- Quantification (for every)

Calls		
U	alarm	X calls
		Yes
1	Yes	0.8
2	No	0.1

anycalls		
U	X calls	anycalls
1	Yes	Yes

pDMN: query

- We want to calculate probability of a symbol
- Query table informs solver of symbols

Query
X calls
anycalls

Alarm			alarm				
U	burglary	earthquake					
			Yes		alls		Query
1	Yes	heavy	0.9	U	X calls	anycalls	X calls
2	Yes	mild	0.85	1	Yes	Yes	anycalls
3	Yes	none	0.8	1		Yes	anycals
4	No	mild	0.1				
5	No	heavy	0.3				

Type		Predicate		
		$\begin{gathered} \text { Name } \\ \hline \text { burglary } \\ \hline \end{gathered}$	Function	
Name	Elements			
Person	john, mary	alarm	Name	
Intensity	heavy, mild, none	Person calls anycalls	earthquake	Intensity

Burglary	Earthquake					Calls		X calls
			earthquake			U	alarm	
U	burglary	Ch						Yes
	Yes		heavy	mild	none	1	Yes	0.8
1	0.7	1	0.01	0.19	0.8	2	No	0.1

Alarm			
U	burglary	earthquake	alarm
			Yes
1	Yes	heavy	0.9
2	Yes	mild	0.85
3	Yes	none	0.8
4	No	mild	0.1
5	No	heavy	0.3

```
{
person_calls(mary): 0.45916,
person_calls(john): 0.45916,
anycalls: 0.550992,
}
```

anycalls			Query
U	X calls	anycalls	X calls
1	Yes	Yes	anycalls

Covid example

- Someone came in contact with infected person
- You want to assess if they had high-risk contact

Covid example

- Someone came in contact with infected person
- You want to assess if they had high-risk contact

Vaccine						
Ch	vaccine of X					
	a	b	n			
1	0.36	0.63	0.01			

Covid example

- Someone came in contact with infected person
- You want to assess if they had high-risk contact

Vaccine			
	vaccine of X		
	a	b	n
1	0.36	0.63	0.01

Infection				
U		X contacted Y	Y is infected	vaccine of X
			is infected	
				Yes
1	Yes	Yes	n	0.8
2	Yes	Yes	a	0.1
3	Yes	Yes	b	0.2

Covid example

- Someone came in contact with infected person
- You want to assess if they had high-risk contact

Vaccine				
Ch	vaccine of X			
	a	b	n	
1	0.36	0.63	0.01	

Infection					
U	X contacted Y	Y is infected	vaccine of X	contact distance	X is infected
					Yes
1	Yes	Yes	n	>5	0.3
2	Yes	Yes	a	>5	0.05
3	Yes	Yes	b	>5	0.05
4	Yes	Yes	n	≤ 5	0.8
5	Yes	Yes	a	≤ 5	0.1
6	Yes	Yes	b	≤ 5	0.2

Covid example

High risk contact?

kulauven ©eavise

pDMN engine

Uses ProbLog internally:

- pDMN tables are translated to ProbLog
- ProbLog calculates the probabilities

pDMN engine

Uses ProbLog internally:

- pDMN tables are translated to ProbLog
- ProbLog calculates the probabilities

```
% Vaccine
0.36::vaccine_of_Person(X, a);0.63::vaccine_of_Person(X, b);0.01::vaccine_of_Person(X, n) :- person(X)
% Infection
0.8::person_is_infected (X) :- person_contacted_Person(X,Y), person_is_infected (Y), vaccine_of_Person(X, n), person(X), person(Y).
0.1::person is infected (X) :- person contacted Person (X, Y), person is infected (Y), vaccine of Person(X, a), person(X), person(Y).
0.2::person_is_infected (X) :- person_contacted_Person(X,Y), person_is_infected(Y), vaccine_of_Person(X, b), person(X), person(Y).
```


kulauven ©eavise

Thank you

More info:

- https://cdmn.readthedocs.io/en/latest/pdmn.html
- https://gitlab.com/EAVISE/cdmn/pdmn
- Vandevelde, S., Verreet, V., De Raedt, L., \& Vennekens, J. (2021). A tablebased representation for probabilistic logic: Preliminary results. ArXiv Preprint ArXiv:2110.01909.
- www.simonvandevelde.be

