

Rimantas Zukaitis,
System Architect

DSL-Based Approach on Business Rules Unit Testing

Testing is essential

Testing is essential,
but really hard

Testing is a Mature Discipline in Software Engineering

● Different types of tests:

○ Unit Testing

○ Integration Testing

○ E2E Testing

○ Manual Testing

● Plenty of various libraries and frameworks for almost any ecosystem

● Popular methodologies and paradigms:

○ TDD, Automated testing, Commit Gating, CI/CD, Coverage KPIs

● Developers are well armed for day to day tasks

Challenges When Testing Business Rules

● High complexity

○ variability of possible test cases

○ dependencies between rules and their outcomes

● Enablement of non-technical users is double edged sword

○ lower access barrier means more thorough testing is needed

● Management and maintenance of tests and test data

● Complex troubleshooting process:

○ is detected issue in rule implementation or application layer?

Our Use Case

● Business Rule for Data Validation
○ Kraken validation rules engine

○ “middle ground” between constraints and complex business rules

● Rules are defined directly on the Domain Entity Model
○ domain model is defined using modelling DSL

○ there can be multiple rules on same attribute

● Up to 1000’s of rules of varying complexity
○ majority are simple, but there can be really complex ones

● The same rules are used for validation in UI and backend

● Elaborate integration layer interpreting rule results
● Pass/fail for backend use cases

● Interactive evaluation and presentation metadata update in UI

Anatomy of Kraken Rule

Rule “MinDriverAge” on Driver.age {

When RiskItem.riskStateCd = “CA”

 Assert age > 20

 Error “err01” : “Driver age must be above 20”

}

● Bound to an entity attribute in domain

model

● Different rule types:

○ Validation rules

○ Default Value rules

○ Presentation rules

● Optional condition expression

● Rule payload (rule type)

● References to other entities

● Hierarchy and dependency resolution

How Kraken Rules Are Evaluated

● Rules are included in entry points

(up to 100s of rules)

● Root entity instance is passed as

input parameter

● Rule engine navigates to each

entity and resolves required

references

● Dependencies taken into account

for evaluation order

● Multiple occurrences and hierarchy

taken into account

How Kraken Rules Are Evaluated

● Rules are included in entry points

(up to 100s of rules)

● Root entity instance is passed as

input parameter

● Rule engine navigates to each

entity and resolves required

references

● Dependencies taken into account

for evaluation order

● Multiple occurrences and hierarchy

taken into account

Rule Variability by Dimensions
@Dimension(“planCode”, “Gold”)

Rule “MinDriverAge” on Coverage.deductible {

 Assert deductible > 100

}

@Dimension(“planCode”, “Silver”)

Rule “MinDriverAge” on Coverage.deductible {

 Assert deductible > 250

}

@Dimension(“planCode”, “Bronze”)

Rule “MinDriverAge” on Coverage.deductible {

 Assert deductible > 500

}

● Each rule can have multiple variations

based on dimensions

● Actual variation of rule determined in

runtime, based on data

● Different rules can have different

variation patterns

● Additional layer of complexity from

testing perspective

Compound Complexity from Testing Perspective

● Each rule requires N test cases to cover
Total:

0 cases

Compound Complexity from Testing Perspective

● Each rule requires N test cases to cover

Rule1
(10 cases)

Total:
10 cases

Compound Complexity from Testing Perspective

● Each rule requires N test cases to cover

● Combining them increases the

complexity

l

Rule1
(10 cases)

Total:
13 cases

Rule2
(3 cases)

Compound Complexity from Testing Perspective

● Each rule requires N test cases to cover

● Combining them increases the

complexity

Rule1
(10 cases)

Total:
21 cases

Rule2 v1
(3 cases)

Rule2 v2
(5 cases)

Rule2 v3
(3 cases)

Compound Complexity from Testing Perspective

● Each rule requires N test cases to cover

● Combining them increases the

complexity

● Dependencies further complicate the

picture

Rule1
(10 cases)

Total:
51 cases

Rule2 v1
(3 cases)

Rule2 v2
(5 cases)

Rule2 v3
(3 cases)

Rule3
(4 cases)

depends on

Compound Complexity from Testing Perspective

● Each rule requires N test cases to cover

● Combining them increases the

complexity

● Dependencies further complicate the

picture

● Full entry point coverage using typical

testing means is impractical
Rule1

(10 cases)

Total:
66 cases

Rule2 v1
(3 cases)

Rule2 v2
(5 cases)

Rule2 v3
(3 cases)

Rule3
(4 cases)

depends on

Rule4
(6 cases)

depends on

Typical Testing Approaches

●Manual Application Testing

●Testing Using Application REST Endpoints

●Implementing JUnit Tests in Java

Manual Application Testing

● Testing the Application itself
○ reverse engineer rule behavior by observing application behavior

● Labor intensive
○ involves multiple steps not related to rule testing
○ especially costly for regression testing scenarios

● Test scenarios need to be aligned with rule implementation
● Typically focus on UI behavior
● Difficult troubleshooting

○ is this rule or not rule related?
○ test scenarios typically not aimed at particular rules

● Usually limited to happy-path scenarios
○ “rules are fine if application works” assumption
○ essentially, no specific rules testing

Testing using Application REST Endpoints

● Invoking REST endpoints with pre-build test data (JSON)

● Testing all rules in rule set, no Isolation

● Reverse engineer rule behavior from REST response

● Focused on backend behavior

CONs:

● Hard to achieve coverage

● Huge amount of test data

● Fragile - sensitive to domain

model changes

● Difficult to troubleshoot

PROs:

● Easy to automate

● No developer involvement

● Reuse of existing infrastructure

Implementing JUnit Tests in Java

● Prepare test data and invoke rule engine from unit test code

● Assert on rule evaluation results

● Declarative test definition - but readable for developers only (its code)

● Offers very good coverage, but at significant cost

CONs:

● Requires developer effort

● Effort intensive

● Inefficient - preparatory vs test code ratio can be 50:1 or more

● Antipattern - code (tests) depending on configuration (rule

definitions)

PROs:

● Promotes good practices (TDD)

● Allows to test rules in isolation

● Great choice of assertions

● Somewhat easier to maintain test

data

Target goals:

● Declarative test definitions

● Same abstraction level as rules development

● Support different levels of granularity testing

● Focus on automation and ease of use

● Simplify test data management

● No code approach - no programming skills are

necessary

Building a Rules Testing Framework

We want to achieve same capabilities as in JUnit, but avoid need to write code.

Modelling a Unit Test for Rule

Moving testing logic from code to configuration (model):

Modelling a Unit Test for Rule

● Each test is defined on one rule artifact:

○ Single Rule

○ Subset of rules

○ Whole entry point

● Each test defines input data template and

expected assertions

● Multiple cases for same test

○ Variability on input data

○ Variability on asserted outcomes

Managing Test Data

● Rules are evaluated on root object

● Most of the data is the same for individual

test cases

● Need a mechanism to:

○ create variations of input data

○ parametrise assertions for each input

data variation

Main Model Elements

Test Suite Defines a list of tests to be evaluated for particular
scenario. User has ability to evaluate separate suite
only.

Test Definition Defines actual rule test. Specifies rule artifact being
tested, input data format and variables, defines overall
structure of the test

Test Case Defines a separate case of particular test, defined in
test definition. Represents a set of single pair of test
input data and expected results.

For example if rule is applicable in 10 states, it could
have one test with 10 test cases.

● Using ANTLR library

● DSL files translated model in runtime

○ Better control than depending on AST

○ Possibility for extension

○ Model can be created without DSL

● Efficient and cheap approach to represent models

○ More readable than XML or JSON

○ Cheaper than building dedicated UI

● Especially useful in prototyping phase

● Read-write capability

Embracing DSL Approach

● Using ANTLR library

● DSL files translated model in runtime

○ Better control than depending on AST

○ Possibility for extension

○ Model can be created without DSL

● Efficient and cheap approach to represent models

○ More readable than XML or JSON

○ Cheaper than building dedicated UI

● Especially useful in prototyping phase

● Read-write capability

Embracing DSL Approach

Test Definition Structure

●Test Definition Name

●Rule Artifact

●Input Data Description

●Variables

●Parametrized Assertions

Test Definition Syntax - Header
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 ...

Test definition name identifies test, must

be unique

Rule artifact can be:

● single rule

● set of rules

● entry point

Specifying Input Data
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 Input {

 Entity "data/entity.json" {

 $driverAge -> /vehicles/0/driver/age

 }

 }

Entity specifies data for root entity

Data from specified JSON file will be

used

Specifying Input Data
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 Input {

 Entity generated {

 $driverAge -> /vehicles/0/driver/age

 }

 }

generated keyword will generate empty

entity instance using domain model

metadata

Parametrizing Input Data
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 Input {

 Entity "data/entity.json" {

 $driverAge -> /vehicles/0/driver/age,

 “John” -> /vehicles/0/driver/name

 }

 }

Following block contains data overrides

Values in entity will be overwritten with

specified ones

Parameterizing Input Data
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 Input {

 Entity "data/entity.json" {

 $driverAge -> /vehicles/0/driver/age,

 “John” -> /vehicles/0/driver/name

 }

 }

Following block contains data overrides

Values in entity will be overwritten with

specified ones

In case of variable, its value will be

resolved from test case

Specifying Dimension Data
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 Input {

 Entity "data/entity.json" {

 $driverAge -> /vehicles/0/driver/age,

 “John” -> /vehicles/0/driver/name

 }

 Dimensions “data/dimensions.json”

 }

Dimensions allows to specify map with

dimension values

Specifying Dimension Data
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 Input {

 Entity "data/entity.json" {

 $driverAge -> /vehicles/0/driver/age,

 “John” -> /vehicles/0/driver/name

 }

 Dimensions from entity

 }

from entity keyword will extract

dimensions from root entity, instead of

loading them from map

Defining variables
TestDefinition "AssertTemplateDefaultsTesting" {

 Rule "MinDriverAge"

 Input {

 Entity "data/entity.json" {

 $driverAge -> /vehicles/0/driver/age

 }

 }

 Variables {

 driverAge : Integer

 isValid : Boolean

 }

Variables are used to parametrize test

input data with values, specific for each

test case

Variables must be defined and used in

test definition, and values will be

supplied in test cases

Using Parameterized Asserts
TestDefinition "AssertDriveAgeValidation" {

 Rule "MinDriverAge"

 Input {

 Entity "data/entity.json" {

 $driverAge -> /vehicles/0/driver/age

 }

 }

 Variables {

 driverAge : Integer

 isValid : Boolean

 }

 Assert Driver.age $isValid as validity

 }

Parameterized asserts will be asserted

on each test case

Parameter values will be taken from test

case

Test Case Structure

●Reference to Test Definition

●Variable values

●Test Case specific assertions

Specifying Variable Values
For TestDefinition "AssertDriveAgeValidation" {

 Test Case “AgeValid” {

 Variables {

 age : 21

 isValid : true

 }

 }

 Test Case “AgeInvalid” {

 Variables {

 age : 19

 isValid : false

 }

 }

Test cases defined in scope of particular

test definition

Each test case is identified by name

Variable values will be used to build final

data image used for testing

Test Case Specific Asserts
For TestDefinition "AssertDriveAgeValidation" {

 Test Case “AgeValid” {

 Variables {

 age : 21

 isValid : true

 }

 Assert Driver.age has no error on /vehicles/0/driver

 }

 Test Case “AgeInvalid” {

 Variables {

 age : 19

 isValid : false

 }

 Assert Driver.age has no error "err01" on

 f88889d8-e1d3-4b4f-850d-383a9e20ae31

 }

Each test case can define additional

assert statements

They will be asserted for this test case

only

In case there are multiple instances of

same entity, it needs to be specified by

ID of path

Multiple assertion types:

- default value,

- validity,

- visibility,

- accessibility,

- has error/warning/info message

- has not error/warning/info msg

Test Suite Definition
TestSuite “Driver Tests” [

 “AssertDriveAgeValidation”,

 “AssertDriverNameValidation”,

 “AssertDriverSSNVisibility”

]

Test Suite is a list of test definitions,

referenced by name

All included tests will be executed, when

executing test suite

It’s offered as a way to organize

semantically related tests

Sample Case - Writing a Rule Unit Test

 Rule "Insured.licenseAcquired-validate" on Insured.licenseAcquired
{

 Assert birthDate < licenseAcquired

 and NumberOfYearsBetween(birthDate, licenseAcquired) >= 16

}

Test Definition
TestDefinition "rules-Insured" {

 Rule "Insured.licenseAcquired-validate"

 Input {

 Entity generated {

 $birthDate -> /insured/birthDate

 $licenseAcquired -> /insured/licenseAcquired

 }

 }

 Variables {

 birthDate: Date

 licenseAcquired: Date

 }

}

Test Definition
TestDefinition "rules-Insured" {

 Rule "Insured.licenseAcquired-validate"

 Input {

 Entity generated {

 $birthDate -> /insured/birthDate

 $licenseAcquired -> /insured/licenseAcquired

 }

 }

 Variables {

 birthDate: Date

 licenseAcquired: Date

 }

}

Test Definition
TestDefinition "rules-Insured" {

 Rule "Insured.licenseAcquired-validate"

 Input {

 Entity generated {

 $birthDate -> /insured/birthDate

 $licenseAcquired -> /insured/licenseAcquired

 }

 }

 Variables {

 birthDate: Date

 licenseAcquired: Date

 }

}

Modelling Test Cases
For TestDefinition "rules-Insured" {

}

Modelling Test Cases
For TestDefinition "rules-Insured" {

 TestCase "Should be valid if insured acquired license when he was at least 16"
{

 Variables {

 birthDate: 1970-05-21

 licenseAcquired: 1986-05-21

 }

 Assert Insured.licenseAcquired is valid

 }

}

Modelling Test Cases
For TestDefinition "rules-Insured" {

 TestCase "Should be valid if insured acquired license when he was at least 16" {

 Variables {

 birthDate: 1970-05-21

 licenseAcquired: 1986-05-21

 }

 Assert Insured.licenseAcquired is valid

 }

 TestCase "Should not be valid if insured acquired license before he was 16" {

 Variables {

 birthDate: 1970-05-21

 licenseAcquired: 1986-05-20

 }

 Assert Insured.licenseAcquired is not valid

 }

}

Executing Tests

● During build cycle

○ integration through maven plugin

○ generates JUnit tests, runs during test

phase

○ free integration in already existing

pipelines (commit gating, release, etc)

● Through programmatic Java API

● Remotely through REST endpoint

● Interactively as part of Rules Studio web

application

• Exhaustive coverage of cases

• Can test combinations of rules

• Applicability based on complexity

• Rule Entry Points per Use Case

• Ensure that rules are included

• Rely on Unit tests for individual rules

• Test General Application Behavior

• Ensure Entry Points are triggered

• Rely on lower level tests for details

Rules Unit Tests Integration Testing
E2E and Manual

Testing

Tackle complexity Bringing it together “Happy Paths”

Test Granularity and Coverage

Further Work

● Methodology to calculate coverage

○ what percentage of rules are covered?

○ what percentage of corner test cases

covered?

○ what percentage of rules are actually

triggered in entry points?

● More user friendly formats to represent test

cases (e.g. excel table)

● Auto generate test definition stubs from rule

definitions

Lessons Learned

● Sometimes custom solution is a way to go,

especially in utility domains, like testing

○ good fit when applied to custom cases

○ simplifies user effort by order of magnitude

○ ability to tailor and address pain-points, e.g.

integration

● Model first approach best for prototyping

○ Avoid “visual thinking”

● DSL approach shines here, due to efficiency and

speed of implementation

● UIs and related tooling can be implemented later

in backward compatible fashion, as its based on

model

@eisgroupltd

@eisgroupltd

Thank You
www.eisgroup.com

@RimasZuk

Thank You

Rimantas Zukaitis
rzukaitis@eisgroup.com

mailto:rzukaitis@eisgroup.com

