Sep 18 - Sep 20, 2023

Declarative Decision Modeling
with Rule Solver

Integrating Rule Engine and Constraint Solver
To support Declarative Decision Modeling

o] 1NN DECISION
T3 MANAGER

RULE
SOLVER

Jacob Feldman, PhD
OpenRules. Inc., CTO
www.OpenRules.com

© 2023 OpenRules, Inc.

Motivation

® In 1997 Prof. Gene Freuder specified “the Holy Grail of
Computer Science’.

The user defines the problem, and the computer solves it!

® It points us to the Declarative Approach when
— The user concentrates on Problem Definition
— The computer does Problem Resolution

® How does it work in the Decision Modeling world today?

https://link.springer.com/article/10.1023/A:1009749006768?LI=true

Decision Modeling - Procedural

® Rule-based movement started with the Declarative
approach 40 years ago using RETE-based Rule
Engines

® However, in the last 20 years Sequential Rule Engines
have been used in the most practical rules-based
decision-making applications

® Nowadays Procedural approach dominates Decision
Modeling:

— Decision models use rules to specify not only WHAT the
decisioning rules are but also HOW to find a decision

— Most modern DMN-like products provide their users with
programming constructs and (explicitly or not) incentivize
them to define decision-finding algorithms in rules

Decision Modeling - Declarative

® \What does constitute Declarative Decision
Modeling?

— Concentration on “WHAT” and not on “HOW”

— Decision Models mainly specify decision variables,
relationships between them, and business objectives

— Reliance on the predefined constraints and search
methods to reach the decision model objective

— A Declarative Decision Engine
+ Should not force a user to describe ALL possible situations in rules

It should be able to find a good or optimal decision automatically!

Sample Decision Model:
Flight Rebooking

® This problem was proposed as a Decision Management Community
Challenge in 2016

A flight was cancelled, and we need to re-book passengers to other flights considering their frequent
flyer status, miles, and seat availability. Here is a sample data and flight assignment rules:

Flight From To Dep Arr Capacity Status
UA123 SFO SNA 1/1/07 6:00 PM 1/1/07 7:00 PM 5 cancelled
UA456 SFO SNA 1/1/07 7:00PM 1/1/07 8:00 PM 2 scheduled
UA789 SFO SNA 1/1/07 9:00 PM 1/1/07 11:00 PM 2 scheduled
UA1001 SFO SNA 1/1/0711:00PM 1/2/07 5:00 AM 0 scheduled
UA1111 SFO LAX 1/1/07 11:00 PM 1/2/07 5:00 AM 2 scheduled

IName Status Miles Flight

Jenny gold 500000 UA123
Harry gold 100000 UA123
Igor gold 50000 UA123
Dick silver 100 UA123
Tom bronze 10 UA123

https://dmcommunity.org/challenge/challenge-oct-2016/

Flight Rebooking:
Procedural Approach

® Most of the submitted solutions used different implementations of the
following greedy algorithm:

Algorithm to build passenger-flight assignments:

1. First, sort all passengers using their GOLD, SILVER or BRONLZE status. If two
passengers have the same status use miles as a tiebreaker.

2. Repeat for every passenger from the sorted list:

4 = Build a list of “suitable flights" for the selected passenger. A “suitable"” flight
should have the same departure and arrival airports as the cancelled flight
and it also should still have an available seat

= Sort the flights inside this list by an earlier departure time

= Assign the flight on the top of the list to the curren! passenger

= Decrement the flight's capacity

® Apparently, this is a Procedural Decision Model. It concentrates on HOW
to find a decision

® This algorithm may find a decision, but it may not be the best one

Flight Rebooking:
Declarative Approach

Given
F set of flights
P set of passengers from the canceled flight
For every passenger p € P and flight f € F Determine
X € {0,1} = 1if passenger p is assigned to flight f € F
= 0 if otherwise
delay,; = number of hours between arrivals of the fight f and the passenger p's canceled flight
= 100 if the passenger p is assigned to not scheduled flight f
penalty,, = delay,* penaltyPerDelayedHour,
Subject to constraints
Each Passenger can be assigned to no more than 1 flight:
Xory + Xopt oo * X <= | for each passenger p € P
Number of passengers assigned to the same flight cannot exceed the flight's capacity
Xort + XKoot oo # Xt <= f ooy fOreach flight f € F
Minimize

zﬁGP zf(r(penaltyp,'xc,) => MIN

This model defines constraints for unknown decision variables x;, delay, penalty
Objective is to minimize the total penalty, but it says nothing about “HOW?” to do it

Decision Engine Implementations

® Decision Engines execute Decision Models
® Implementation techniques:

1.

Rule Engines:

Inferential (RETE)
Sequential (most DMN implementations)
Usually oriented to Business Users

Use of LLMs to generate problem-specific decision
engines

Natural language as an input
Pure Constraint Solvers

Integrated Rule Engine and Constraint Solver}

Outline of my presentation

® Integrated use of Rule Engines and
Constraint Solvers for declarative
decision modeling

® Different Integration Approaches:
1. Rule Engine implemented using a Constraint Solver
2. Loosely coupled Decision Services:

— Business Decision Service: Rules-based

— Technical Decision Service: Constraint-based

3. Using Rule-based and Constraint-based decision
tables inside the same Decision Model (New)

® Sample Decision Models with Rule Solver

Rule Engines
(within Decision Management Environments)

® Efficiently execute Rules-based Decision Models for
complex business problems

® Decision modeling is done using a user-friendly IDE

that allows business(!) users to:

— Create and maintain decision models using business rules in user-
friendly formats such as standardized decision tables (DMN)

— Define Rule Flows
— Test and Debug Business Rules
— Deploy Decision Models on-cloud or on-premise as Decision
Services
® Rule Engine:
— finds only one decision (not necessarily an optimal one)

— requires everything to be defined in rules including both “What”
and “How”

® Usually Oriented to Subject Matter Experts

10

Constraint Solvers

® Efficiently execute constraint-based Decision
Models for complex optimization problems

® Constraint Solvers:

— Implemented as:

» Specialized Constraint Programming languages such as CPLEX OPL, AMPL,
MiniZinc, or JSR331

* API for C++, Java, or Python
— Include predefined Global Constraints and Search Strategies
— Capable to find Multiple and Optimal decisions

— Frequently rely on a predefined search strategy not forcing a
user to specify “How”

® Usually Oriented to Software Developers

11

Comparing Rule Engines and
Constraint Solvers

Features

Rule Engine

Constraint Solver

Target Business Analysts (SMES) Software Developers
Audience

WHAT: Decision Tables and other A programming language
Specifying business-friendly DMN-like or a special CP modeling
Goals and constructs language (CPLEX OPL,

Relationships

AMPL, MiniZinc, or JSR331)

HOW: - Required for commonly used | - Usually not required
Search sequential engines

Strategy to - Not required for inferential - Heuristics may be

find a engines (rarely used nowadays) | configured to expedite
decision the search

Decision NO (in most practical cases) YES (in many practical cases)

Optimality

12

Using Constraint Solver as Rule Engine

® Key objectives:

— Extend DMN to handle “unknown variables” like “known variables”
— Solve optimization problems
— Make Constraint Solvers more accessible to business users

Two known implementations:

2011 Jacob Feldman published a paper “Representing and Solving
Rule-based Decision Models with Constraint Solvers”. It became

the foundation of OpenRules® Rule Solver:

* Rule Solver took a Business Decision Model implemented in
accordance with the TDM standard (a predecessor of DMN)

» Converted it to a Constraint Satisfaction Problem using the JSR331
standard representation

* Used any off-the-shelf Constraint Solver included in JSR331 to validate
and execute the decision model and find a feasible or optimal decision.

2020 KU Leuven scientists introduced an extension to the DMN
standard called cDMN (Constraint Decision Model and Notation):
« cDMN solves optimization-related Decision Management Community
challenges using a DMN-like notation

13

http://openrules.com/pdf/RuleML2011.JacobFeldman.pdf
http://openrules.com/pdf/RuleML2011.JacobFeldman.pdf
http://rulesolver.com/
https://www.amazon.com/Decision-Model-Framework-Technology-Management-ebook/dp/B009STI2IQ/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=1685368171&sr=8-1
https://www.omg.org/spec/DMN
http://jsr331.org/
https://arxiv.org/pdf/2110.02610.pdf
https://dmcommunity.org/challenge/

Integration Approach 1:

Constraint Solver as a Rule Engine

® Rule Engine implemented using a Constraint

Solver
— Input: DMN-like Decision Model
— Output: Constraint Satisfaction Problem (CSP)

— Execution mechanism: an off-the-shelf constraint (or linear)
solver

® Advantages:
— Consistency validation of decision models (inside and across all
decision tables)
— Ability to solve optimization problems

® Limitations:

— Cannot handle popular decision modeling (DMN) constructs such as
multi-hit decision tables, aggregation functions, loops and more

— Does not use the entire power of a constraint solver
— Makes intuitive decision tables harder to understand.

14

Integration Approach 2:

Loosely Coupled Rule Engine and Constraint Solver

® Inthe last 5 years, many decision management vendors and

users switched to loosely coupled Decision Microservices
deployed on-cloud

— Orchestration of these RESTful services became quite simple and not
dependent on their underlying implementations

— 80, in 2019 | published a paper “Business Decision Modeling with Rule
Engines and CP/LP Solvers” that advocates splitting a decision model
into three parts (decision services):

(DMN-like) (uses JavaSolver.com)

[Business Decision Service] [Technical Decision Service]

Orchestrated Decision Service

® This approach remains practical and powerful with 2 issues:

— Involvement of technical experts
— Passing of data between Business and Technical services

15

https://www.researchgate.net/publication/336617478_Business_Decision_Modeling_with_Rule_Engines_and_CPLP_Solvers
https://www.researchgate.net/publication/336617478_Business_Decision_Modeling_with_Rule_Engines_and_CPLP_Solvers
http://javasolver.com/

Integration Approach 3 (New)

Using Rule-based and Constraint-based Decision Tables Together

I i Decision DefineMedicatio
® DMN-like decision tables usually e oo

Condition Condition Conclusion

combine Condition and Conclusion | T | Patintalergies | RSeonmended
columns: >=| 18

Is Amoxicillin

< 18 Is Cefuroxime
Include | Penicillin || Is Levofloxacin

® The key idea: What if we expand regular
DMN-like decision tables with new types of

conditions and conclusions supported by a
Constraint Solver?
— Example for “Flight Rebooking”: For each Passenger and

each Flight the following table will create a new Booking
variable that can take the value 0 or 1

Business

Solver Action

Action " (starts with prefix
“Solver”)
Becision AddNewBooking

Action SolverVar
Booking Var Name Min Max
{{Passenger Name}}-{{Flight Mumber}}| Booking 0 1

17

=\ | Integration Approach 3 (New)

Using Rule-based and Constraint-based Decision Tables Together

® New RuleSolver.com allows the author of decision models to
mix and match traditional DMN-like constructs with Solver
constructs within the same decision table, e.qg.

Business Solver

Condition Action
DecisionTable AddPenaltyVariable
Condition SolverExpressionToList

Flight Number List Name | Var Name |Oper WValue

Is Not | CANCELED | Al Penalty Book FPenalty Per Delayed Hour * Delay Hours
: ookin *
ls | CANCELED | Varables d Penalty Per Delayed Hour * 100

® It means we may use special conditions and actions inside
regular single-hit and multi-hit decision tables to:
— Define constrained variables and mix them with regular variables

— Define and post predefined linear and global constraints on these
decision variables

— Solve the problem by using predefined search methods to find feasible
or optimal solutions

18

http://rulesolver.com/

Decision Modeling with Rule Solver

A user needs to define two main tables
— “Define” that defines the problem
— “Solve” that solves the problem

Typical main tables:

Table "Define” requires major decision Decision Define

. . ActionExecute
modeling efforts to define: Steps
. DefineVariables
— Al _known and yet unknown decision DefineExpressions
variables DefineCaonstraints
— Relationships between them (constraints) PostConstraintst
P PostConstraints2
— Optimization Objective (optional) PostConstraints3
PostConstraints4

Table “Solve” usually is small and

Decision Solve

relies on predefined solving methods ActionExecute
“ . . ” Steps
such as “SolverFindSolution SolverFindSolution

19

Problem
Specific

New Column

Types

A very simple example: Map Coloring

North Sea This challenge deals with map coloring. You
Tiitad N need to use no more than 4 colors (blue, red,
Kingdom green, or vellow) to color six European
[T Germany countries: Belgium, Denmark, France,
. w, | | Germany, Luxembourg, and the
France. o l..m.m s: Netherlands in such a way that no
, Ve “57° Fuw neighboring countries use the same color.

ActionExecute ActionExecute
Steps Steps
DefineCountryVariables SolverFindSolution Predefined in
, : , : Rule Solver
FostNeighboringCountriesConstraints

Decision DefineCountryVariables

Decision PostNeighboringCountriesConstraints

[SolverVar SolverVarOperVar
Var Name Min Max Country oper Country
Belgium 1 A France 1= Belgium
Denmark 1 4 France I= Luxembourg
France 1 4 France 1= Germany
Germany 1 4 Luxembourg I= Germany
Netherlands 1 4 Luxembourg 1= Belgium
Luxembourg 1 4 Belgium I= Metherlands
Belgium 1= Germany
Germany I= Denmark

Execution results: Belgium[1] Denmark[1] France[2] Germany[3] Netherlands[2] Luxembourg[4]

20

What if we have only 3 colors?

North Seo
Denmark

= &
m:‘n
| " /)
" France /*"/ Repreen .,
| rertond’ ustrio
, ‘:’" A e Hur

It means we should allow some neighboring
countries to be colored with the same colors. Here
are the relative costs for such rule violations:

France — Luxembourg: $257
Luxembourg — Germany: $904
Luxembourg — Belgium: $568

Old Rules: New Hard and Soft Rules:
Decision PostNeighboringCountriesConstraints Decision PostHardConstraints Solver Action]
SolverVarOperVar SolverVarOperVar
Country oper Country Country oper Country
France 1= Belgium France I= Belgium
France I= Luxembourg France 1= Germany
France = Germany Belgium I= Metherlands
Luxembourg I= Germany - —
- . Belgium I= Germany
Luxembourg I= Belgium G - D "
Belgium I= MNetherlands ermany — £nmar
Belgium I= Germany :
Germany = Denmark Decision CreateSoftConstraints Solver Action]
SolverVarOperVarSoft
Country oper Country Violation Cost
Luxembourg = Belgium 568
France = Luxembourg 257
Luxembourg = Germany 204

21

What if we have only 3 colors?

We may add soft constraints to the list “Constraint Violations”:

Decision AddSoftConstraints ToList

SolverVarToList
Country Country
Constraint Violations Luxembourg = Belgium
Constraint Violations France = Luxembourg
Constraint Violations | Luxembourg = Germany

Calculate “Total Constraint Violation”:

Decision DefineTotalConstraintViolation Solver Action]
SolverSum —
Sum Variables
Total Constraint Violation Constraint Violations

And find a solution that Minimizes “Total Constraint Violation’:

_— — T Solver Action it Vinlati
Decision MinimizeTotalConstraintViolation —] Total Constraint Violation [257]
—— =i b i - Belgium: red
Optimization Type Objectve
Minimize Total Constraint Violation Denmark: red

France: green
Germany: blue
Metherlands: green

Luxembourg: green

A more complex example: Where Is Zebra?

® Problem Description:

1. There are five houses.

2_The Englishman lives in the red house.

3. The Spaniard owns the dog.

4_Coffee is drunk in the green house.

5. The Ukrainian drinks tea.

6. The green house is immediately to the right of the ivory house.
7. The Old Gold smoker owns snails.

8. Kools are smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

12. Kools are smoked in the house next to the house where the horse is kept.
13. The Lucky Strike smoker drinks orange juice.

14 The Japanese smokes Parliaments.

15. The Norwegian lives next to the blue house.

® Decision Model methods “Define” and “Solve”

ActionExecute ActionExecute
Steps Steps
DefineVariables SolverFind Solution
DefineExpressions
DefineConstraints
PostConstraints1
FostConstraints2
PostConstraints3
FPostConstraints4

11. The man who smokes Chesterfields lives in the house next to the man with the fox.

23

Where 1s Zebra?

® Define Constrained Decision Variables and Expressions

Decision DefineVariables

SolverVarArray

Solver Action

Decision DefineExpressions
SolverExpressionVarOperValue

Rule

Array Mame

Var Mames

Min

Max

Colors

Green
hvory
Blue
Red

Yellow

Expresion Mame

Var Mame

Oper

House Right of lvory

Ivary

House Right of Fox

Fox

People

Morwegian
Ukrainian
Japanese

Englishman
Spaniard

Drinks

Juice
Tea
Milk

Water

Coffes

Pets

Snail
Dog
Fox

Horse
ZEBRA,

Cigarettes

Chesterfield
Parliament

Lucky
OldGolds

Kools

House Left of Fox

Fox

House Right of Horse

Horse

House Left of Horse

Horse

House Right of Blue

Blue

House Left of Blue

Blue

24

Where 1s Zebra?

® Post Simple Constraints

Decision PostConstraints1 Decision PostConstraints?2
SolverVarOperVar SolverVarOperValue
" v X oper
_ e Milk = 3
Englishman = Fed Norwegian _ 1
Spaniard = Do
P E Decision PostConstraints3
Coffee _ Green SolverAllDif ————" Predefined Global
Ukrainian = Tea Array \l Constraint “AlIDiff”
OldGolds = Snail Colors
Kools = Yellow People
Lucky = Juice Drinks
Japanese = Parliament Pets
Green = House Right of lvary Cigarettes

25

Where 1s Zebra?

® Define and Post Relational Constraints

Decision DefineConstraints
SolverConstraintVarOperVar
Constraint Mame War aper Value
Kools are smoked in the huusg Right to the house Kools _ House Right of Harse
where the horse is kept
Kools are smoked in the huus_e Left to the house Kools - House Left of Horse
where the horse is kept
The man who smokes Chesterfields lives in the _ .
house Right to the man with the fox Chestarfield - House Right of Fox
The man who smokes Chesterfields lives in the _
house Left to the man with the fox Chesterfield - House Left of Fox
The Morwegian lives Right to the blue house Morwegian = House Right of Blue
The Morwegian lives Left to the blue house Morwegian = House Left of Blue

Decision PostConstraints4

SolverOr

Constraint 1 Constraint 2

Kools are smoked in the house Right to the | Kools are smoked in the house Left to the
house where the horse is kept house where the horse is kept

The man who smokes Chesterfields lives in | The man who smokes Chesterfields lives in
the house Right to the man with the fox the house Left to the man with the fox

The Norwegian lives Right to the blue house | The MNorwegian lives Left to the blue house

Green[5] Ivory[4] Blue[2] Red[3] Yellow[1]
. Norwegian[1] Ukrainian[2] Japanese[5] Englishman[3] Spaniard[4]
® Solution

Juice[4] Tea[2] Milk[3] Water[1] Coffee[5]

Snail[3] Dog[4] Fox[1] Horse[2] ZEBRA[S]

Chesterfield[2] Parliament[5] Lucky[4] OldGolds[3] Kools[1]

® New constraint-based columns start with the prefix “Solver”

Constraint-based Columns
for Standard Decision Tables

® Columns that Define Constrained Variables:

Var Name

Expresion
Name

Var
Name

Oper Value

List Name

SolverVarToList

Var Name

SolverExpressionToList

List Name

Var Name| Oper | Value

SolverSum

Sum
Name

List of
Vanables

SolverScalarProduct

Scalar

List of

Product Name | Variables

List of
Coefficients

Define a constrained variable with a domain Min-Max

Defines a constrained expression, e.g. “Var < 10"

Adds a constrained variable to a list

Defines a constrained expression and adds it to a list

Defines a sum of variables

Defines a scalar product of variables and coefficients

27

Constraint-based Columns
for Standard Decision Tables

® Columns that Post Constraints:

SolverVarOperVar + Posts constraint “Var 1 <oper> Var 2", e.g.
Vari Name | Oper | Var2 Name “Total Calculated Discount <= 10% of Premium”
_Solve AlIDAT « Posts constraint which ensures that no two variables inside
List of Vanables the provided list can have the same value
SCHAEEMOPEIV NS Posts constraint “Sum of List of Variables <oper> Value”
List of
Varsbles | 0P | Value
SolverScala rValue « Posts constraint “Variables X Coefficients <oper> Value"

List of List of
Variables | Coefficients | P% | Value

SolverVarOperValue Soft « Posts soft constraint:
Var | Oper | Vaiue |Violation Cost Var <oper> Value with Violation Cost

SolverifThen + Posts constraint:
Vart | Oper | Va2 | vart | Oper | var2 If (“Var1 <oper> Var2") Then ("Var3 <oper> Var4")
SolverOr + Posts constraint:
Varl |Oper| Var2 | Var3 |Oper| Vard Either ("Var1 <oper> Var2") Or (*Var3 <oper> Var4")

Constraint-based Columns
for Standard Decision Tables

® Predefined Search Methods and Templates:

| SolverFindSolution |

SoverSetObech
Objective Name

| SolverMinimize I

Mimimize or O

Mamimize Vanable

This method finds a feasible solution
This template defines an Optimization Objective

This method finds a solution that minimizes an already-
defined objective

This template finds a solution that Minimizes or Maximizes
the Objective Varlable

This method saves a solution by assigning values of all
instantiated variables to their business counterparts

This template assigns a found value of a “Solver Variable"
to a "Business Variable”

29

columns for the standard decision tables

® OpenRules provides an easy way to create custom

® Example:

SolverOptimize

Minimize or
Maximize

— Column “SolverOptimize™:

Objective
Variable

— |tis based on this template: solver(decision).optimize(type, objective);
String type String objective
MF:qnlmlzg or Objective Variable
aximize

® Rule Solver utilizes an open-source “Java
Constraint Programming API” (JSR-331)

® [t can use any off-the-shelf Constraint Solver from
JSR-331 without any changes in the decision model

How Rule Solver Is Implemented

30

http://javasolver.com/

Flight Rebooking Implementation (1)

® The complete decision model “Flight Rebooking” is
described at http://RuleSolver.com

® This decision model is relatively complex for a live
presentation, but here are a few implementation

examples:

ActionExecute
Decision Tables
CalculateBookingPenalties
DefineFlightSuitability
DefineBookingVariables
PostAssignmentConstraints
PostCapacityConstraints

Decision Solve

ActionExecute
Decision Tables
DefineOptimizationObjective
MinimizeTotalPenalty
SetRebookings

J

for each passenger
for each flight
for each passenger and each flight

31

http://rulesolver.com/

Flight Rebooking Implementation (2)

® The most interesting part of this model:
penalty,, = delay,* penaltyPerDelayedHour,

Decision CalculateBookingPenalties

[for each Passenger in Passengers]

Condition Condition Conclusion
Pﬂ;’;‘:]gser Passenger Miles DF;T::;E I1P:|:r

= 10

GOLD + 15
SILVER + B
BRONZE + 5
500000+ + 4

[250000..500000) 1 + 3
[100000.250000) | + 2
[25000..100000) + 1

® If we decide to also consider a “Number of Traveling
Children”, we will simply add another column to this
business decision table (no changes in the solver part
are required!)

32

Flight Rebooking: Defining Penalty Variables

® For each Passenger and for each Flight
— Create a Booking constrained variable:

Decision AddNewBooking

Action Action SolverVar
Booking Bookings Var Name Min Max
{iPassenger Name}-H{Flight Number}} | Add Booking Booking 0 1

— Define Delay Hours:

Action
Delay Hours

= (int) Dates_hours(${Original Arrival Time}, ${Flight Arrival Time]})

— Create “All Penalty Variables”:

DecisionTable AddPenaltyVariable

Condition SolverExpressionToList
Flight Number List Name | Var Name |Oper Value
Is Not | CANCELED | Al Penalty Book Penalty Per Delayed Hour * Delay Hours
. ookin *
ls | CANCELED | Variables ’ Penalty Per Delayed Hour * 100
i . Decision DefineQptimizationObjective
o Then we W|” deﬂne SolverSum
”Total Penalty”: Sum Mame Variables
Total Penalty All Penalty Variables

DecisionTable MinimizeTotalPenalty

® And m.inimize it using the B
predefined method Optimization
“SolverOptimize”: ape

Minimize Total Penalty

Objective

Future Improvements

® Current implementation with Solver Columns
allows a user to concentrate on Problem Definition
but it still uses too many low-level detalils

® Future improvement steps:

— Offer more user-friendly constructs for Problem Definition

— Move declarations of Solver variables and their
relationships into the extended Business Glossary

— Instead of using custom column templates, automatically
generate Solver’s code

— Potential integration with LLMs

34

Conclusion

® An advanced OpenRules Rule Solver integrates
Rule Engine and Constraint Solver to support
Declarative Decision Modeling:

— Resulting decision models only specify Problem Definition
(“What”)

— Predefined Problem Resolution rules allow a decision
model’s author not to worry about decision search (“How")

® Side Effects of a new Rule Solver:

— Instead of one possible decision, your decision model can
find multiple and even optimal decisions

— It makes traditional Constraint Solvers business friendlier
using the expressive power of decision tables.

35

http://rulesolver.com/

Thank you!

QnA

www.OpenRules.com

	Slide 1
	Slide 2: Motivation
	Slide 3: Decision Modeling - Procedural
	Slide 4: Decision Modeling - Declarative
	Slide 5: Sample Decision Model: Flight Rebooking
	Slide 6: Flight Rebooking: Procedural Approach
	Slide 7: Flight Rebooking: Declarative Approach
	Slide 8: Decision Engine Implementations
	Slide 9: Outline of my presentation
	Slide 10: Rule Engines (within Decision Management Environments)
	Slide 11: Constraint Solvers
	Slide 12: Comparing Rule Engines and Constraint Solvers
	Slide 13: Using Constraint Solver as Rule Engine
	Slide 14: Integration Approach 1: Constraint Solver as a Rule Engine
	Slide 15: Integration Approach 2: Loosely Coupled Rule Engine and Constraint Solver
	Slide 17: Integration Approach 3 (New) Using Rule-based and Constraint-based Decision Tables Together
	Slide 18: Integration Approach 3 (New) Using Rule-based and Constraint-based Decision Tables Together
	Slide 19: Decision Modeling with Rule Solver
	Slide 20: A very simple example: Map Coloring
	Slide 21: What if we have only 3 colors?
	Slide 22: What if we have only 3 colors?
	Slide 23: A more complex example: Where is Zebra?
	Slide 24: Where is Zebra?
	Slide 25: Where is Zebra?
	Slide 26: Where is Zebra?
	Slide 27: Constraint-based Columns for Standard Decision Tables
	Slide 28
	Slide 29: Constraint-based Columns for Standard Decision Tables
	Slide 30: How Rule Solver Is Implemented
	Slide 31: Flight Rebooking Implementation (1)
	Slide 32: Flight Rebooking Implementation (2)
	Slide 33: Flight Rebooking: Defining Penalty Variables
	Slide 34: Future Improvements
	Slide 35: Conclusion
	Slide 36

