
© 2023 OpenRules, Inc.

Declarative Decision Modeling

with Rule Solver

Integrating Rule Engine and Constraint Solver

To support Declarative Decision Modeling

+

Jacob Feldman, PhD

OpenRules. Inc., CTO

www.OpenRules.com

Motivation

⚫ In 1997 Prof. Gene Freuder specified “the Holy Grail of

Computer Science”:

⚫ It points us to the Declarative Approach when

– The user concentrates on Problem Definition

– The computer does Problem Resolution

⚫ How does it work in the Decision Modeling world today?

© 2023 OpenRules, Inc.
2

The user defines the problem, and the computer solves it!

https://link.springer.com/article/10.1023/A:1009749006768?LI=true

Decision Modeling - Procedural

⚫ Rule-based movement started with the Declarative

approach 40 years ago using RETE-based Rule

Engines

⚫ However, in the last 20 years Sequential Rule Engines

have been used in the most practical rules-based

decision-making applications

⚫ Nowadays Procedural approach dominates Decision

Modeling:

– Decision models use rules to specify not only WHAT the

decisioning rules are but also HOW to find a decision

– Most modern DMN-like products provide their users with

programming constructs and (explicitly or not) incentivize

them to define decision-finding algorithms in rules

© 2023 OpenRules, Inc.
3

Decision Modeling - Declarative

⚫ What does constitute Declarative Decision

Modeling?

– Concentration on “WHAT” and not on “HOW”

– Decision Models mainly specify decision variables,

relationships between them, and business objectives

– Reliance on the predefined constraints and search

methods to reach the decision model objective

– A Declarative Decision Engine

• Should not force a user to describe ALL possible situations in rules

• It should be able to find a good or optimal decision automatically!

© 2023 OpenRules, Inc.
4

Sample Decision Model:

Flight Rebooking

© 2023 OpenRules, Inc.
5

⚫ This problem was proposed as a Decision Management Community

Challenge in 2016

https://dmcommunity.org/challenge/challenge-oct-2016/

Flight Rebooking:

Procedural Approach

© 2023 OpenRules, Inc.
6

⚫ Most of the submitted solutions used different implementations of the

following greedy algorithm:

⚫ Apparently, this is a Procedural Decision Model. It concentrates on HOW

to find a decision

⚫ This algorithm may find a decision, but it may not be the best one

Flight Rebooking:

Declarative Approach

© 2023 OpenRules, Inc.
7

⚫ This model defines constraints for unknown decision variables xpf, delaypf, penaltypf

⚫ Objective is to minimize the total penalty, but it says nothing about “HOW” to do it

Decision Engine Implementations

⚫ Decision Engines execute Decision Models

⚫ Implementation techniques:

1. Rule Engines:

• Inferential (RETE)

• Sequential (most DMN implementations)

• Usually oriented to Business Users

2. Use of LLMs to generate problem-specific decision

engines

• Natural language as an input

3. Pure Constraint Solvers

4. Integrated Rule Engine and Constraint Solver

© 2023 OpenRules, Inc.
8

Outline of my presentation

⚫ Integrated use of Rule Engines and

Constraint Solvers for declarative

decision modeling

⚫ Different Integration Approaches:
1. Rule Engine implemented using a Constraint Solver

2. Loosely coupled Decision Services:

– Business Decision Service: Rules-based

– Technical Decision Service: Constraint-based

3. Using Rule-based and Constraint-based decision

tables inside the same Decision Model (New)

⚫ Sample Decision Models with Rule Solver

© 2023 OpenRules, Inc.
9

Rule Engines
(within Decision Management Environments)

⚫ Efficiently execute Rules-based Decision Models for

complex business problems

⚫ Decision modeling is done using a user-friendly IDE

that allows business(!) users to:
– Create and maintain decision models using business rules in user-

friendly formats such as standardized decision tables (DMN)

– Define Rule Flows

– Test and Debug Business Rules

– Deploy Decision Models on-cloud or on-premise as Decision

Services

⚫ Rule Engine:

– finds only one decision (not necessarily an optimal one)

– requires everything to be defined in rules including both “What”

and “How”

⚫ Usually Oriented to Subject Matter Experts
© 2023 OpenRules, Inc.

10

Constraint Solvers

⚫ Efficiently execute constraint-based Decision

Models for complex optimization problems

⚫ Constraint Solvers:
– Implemented as:

• Specialized Constraint Programming languages such as CPLEX OPL, AMPL,

MiniZinc, or JSR331

• API for C++, Java, or Python

– Include predefined Global Constraints and Search Strategies

– Capable to find Multiple and Optimal decisions

– Frequently rely on a predefined search strategy not forcing a

user to specify “How”

⚫ Usually Oriented to Software Developers

© 2023 OpenRules, Inc.
11

Comparing Rule Engines and

Constraint Solvers

© 2023 OpenRules, Inc.
12

Features Rule Engine Constraint Solver

Target

Audience

Business Analysts (SMEs) Software Developers

WHAT:

Specifying

Goals and

Relationships

Decision Tables and other

business-friendly DMN-like

constructs

A programming language

or a special CP modeling

language (CPLEX OPL,

AMPL, MiniZinc, or JSR331)

HOW:

Search

strategy to

find a

decision

- Required for commonly used

sequential engines

- Not required for inferential

engines (rarely used nowadays)

- Usually not required

- Heuristics may be

configured to expedite

the search

Decision

Optimality

NO (in most practical cases) YES (in many practical cases)

Using Constraint Solver as Rule Engine

⚫ Key objectives:
– Extend DMN to handle “unknown variables” like “known variables”

– Solve optimization problems

– Make Constraint Solvers more accessible to business users

⚫ Two known implementations:

© 2023 OpenRules, Inc.
13

2011 Jacob Feldman published a paper “Representing and Solving

Rule-based Decision Models with Constraint Solvers”. It became

the foundation of OpenRules® Rule Solver:
• Rule Solver took a Business Decision Model implemented in

accordance with the TDM standard (a predecessor of DMN)

• Converted it to a Constraint Satisfaction Problem using the JSR331

standard representation

• Used any off-the-shelf Constraint Solver included in JSR331 to validate

and execute the decision model and find a feasible or optimal decision.

2020 KU Leuven scientists introduced an extension to the DMN

standard called cDMN (Constraint Decision Model and Notation):
• cDMN solves optimization-related Decision Management Community

challenges using a DMN-like notation

http://openrules.com/pdf/RuleML2011.JacobFeldman.pdf
http://openrules.com/pdf/RuleML2011.JacobFeldman.pdf
http://rulesolver.com/
https://www.amazon.com/Decision-Model-Framework-Technology-Management-ebook/dp/B009STI2IQ/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=1685368171&sr=8-1
https://www.omg.org/spec/DMN
http://jsr331.org/
https://arxiv.org/pdf/2110.02610.pdf
https://dmcommunity.org/challenge/

Integration Approach 1:
Constraint Solver as a Rule Engine

⚫ Rule Engine implemented using a Constraint

Solver
– Input: DMN-like Decision Model

– Output: Constraint Satisfaction Problem (CSP)

– Execution mechanism: an off-the-shelf constraint (or linear)

solver

⚫ Advantages:
– Consistency validation of decision models (inside and across all

decision tables)

– Ability to solve optimization problems

⚫ Limitations:

– Cannot handle popular decision modeling (DMN) constructs such as
multi-hit decision tables, aggregation functions, loops and more

– Does not use the entire power of a constraint solver

– Makes intuitive decision tables harder to understand.
© 2023 OpenRules, Inc.

14

Integration Approach 2:
Loosely Coupled Rule Engine and Constraint Solver

⚫ In the last 5 years, many decision management vendors and

users switched to loosely coupled Decision Microservices

deployed on-cloud

– Orchestration of these RESTful services became quite simple and not

dependent on their underlying implementations

– So, in 2019 I published a paper “Business Decision Modeling with Rule

Engines and CP/LP Solvers” that advocates splitting a decision model

into three parts (decision services):

⚫ This approach remains practical and powerful with 2 issues:

– Involvement of technical experts

– Passing of data between Business and Technical services

© 2023 OpenRules, Inc.
15

Business Decision Service

(DMN-like)

Technical Decision Service

(uses JavaSolver.com)

Orchestrated Decision Service

https://www.researchgate.net/publication/336617478_Business_Decision_Modeling_with_Rule_Engines_and_CPLP_Solvers
https://www.researchgate.net/publication/336617478_Business_Decision_Modeling_with_Rule_Engines_and_CPLP_Solvers
http://javasolver.com/

Integration Approach 3 (New)
Using Rule-based and Constraint-based Decision Tables Together

⚫ DMN-like decision tables usually

combine Condition and Conclusion

columns:

⚫ The key idea: What if we expand regular

DMN-like decision tables with new types of

conditions and conclusions supported by a

Constraint Solver?
– Example for “Flight Rebooking”: For each Passenger and

each Flight the following table will create a new Booking

variable that can take the value 0 or 1

© 2023 OpenRules, Inc.
17

Solver Action

(starts with prefix

“Solver”)

Business

Action

Integration Approach 3 (New)
Using Rule-based and Constraint-based Decision Tables Together

⚫ New RuleSolver.com allows the author of decision models to

mix and match traditional DMN-like constructs with Solver

constructs within the same decision table, e.g.

⚫ It means we may use special conditions and actions inside

regular single-hit and multi-hit decision tables to:

– Define constrained variables and mix them with regular variables

– Define and post predefined linear and global constraints on these

decision variables

– Solve the problem by using predefined search methods to find feasible

or optimal solutions
© 2023 OpenRules, Inc.

18

Solver

Action

Business

Condition

http://rulesolver.com/

Decision Modeling with Rule Solver

⚫ A user needs to define two main tables

– “Define” that defines the problem

– “Solve” that solves the problem

⚫ Table “Define” requires major decision

modeling efforts to define:

– All known and yet unknown decision

variables

– Relationships between them (constraints)

– Optimization Objective (optional)

⚫ Table “Solve” usually is small and

relies on predefined solving methods

such as “SolverFindSolution”

© 2023 OpenRules, Inc.
19

Typical main tables:

A very simple example: Map Coloring

© 2023 OpenRules, Inc.
20

Predefined in

Rule Solver

Problem

Specific

New Column

Types

Execution results: Belgium[1] Denmark[1] France[2] Germany[3] Netherlands[2] Luxembourg[4]

What if we have only 3 colors?

© 2023 OpenRules, Inc.
21

It means we should allow some neighboring

countries to be colored with the same colors. Here

are the relative costs for such rule violations:

Old Rules: New Hard and Soft Rules:

Solver Action

Solver Action

What if we have only 3 colors?

© 2023 OpenRules, Inc.
22

We may add soft constraints to the list “Constraint Violations”:

Calculate “Total Constraint Violation”:

And find a solution that Minimizes “Total Constraint Violation”:

Solver Action

Solver Action

⚫ Problem Description:

⚫ Decision Model methods “Define” and “Solve”

A more complex example: Where is Zebra?

© 2023 OpenRules, Inc.
23

Where is Zebra?

© 2023 OpenRules, Inc.
24

⚫ Define Constrained Decision Variables and Expressions
Solver Action

Where is Zebra?

© 2023 OpenRules, Inc.
25

⚫ Post Simple Constraints

Predefined Global

Constraint “AllDiff”

Where is Zebra?

© 2023 OpenRules, Inc.
26

⚫ Define and Post Relational Constraints

⚫ Solution

Constraint-based Columns

for Standard Decision Tables

⚫ New constraint-based columns start with the prefix “Solver”

⚫ Columns that Define Constrained Variables:

© 2023 OpenRules, Inc.
27

⚫ Columns that Post Constraints:

© 2023 OpenRules, Inc.
28

Constraint-based Columns

for Standard Decision Tables

⚫ Predefined Search Methods and Templates:

© 2023 OpenRules, Inc.
29

Constraint-based Columns

for Standard Decision Tables

How Rule Solver Is Implemented

⚫ OpenRules provides an easy way to create custom

columns for the standard decision tables

⚫ Example:

– Column “SolverOptimize”:

– It is based on this template:

⚫ Rule Solver utilizes an open-source “Java

Constraint Programming API” (JSR-331)

⚫ It can use any off-the-shelf Constraint Solver from

JSR-331 without any changes in the decision model

© 2023 OpenRules, Inc.
30

http://javasolver.com/

Flight Rebooking Implementation (1)

© 2023 OpenRules, Inc.
31

⚫ The complete decision model “Flight Rebooking” is

described at http://RuleSolver.com

⚫ This decision model is relatively complex for a live

presentation, but here are a few implementation

examples:

http://rulesolver.com/

Flight Rebooking Implementation (2)

© 2023 OpenRules, Inc.
32

⚫ The most interesting part of this model:

⚫ If we decide to also consider a “Number of Traveling

Children”, we will simply add another column to this

business decision table (no changes in the solver part

are required!)

Flight Rebooking: Defining Penalty Variables

© 2023 OpenRules, Inc.
33

⚫ For each Passenger and for each Flight

– Create a Booking constrained variable:

– Define Delay Hours:

– Create “All Penalty Variables”:

⚫ Then we will define

”Total Penalty”:

⚫ And minimize it using the

predefined method

“SolverOptimize”:

Future Improvements

⚫ Current implementation with Solver Columns

allows a user to concentrate on Problem Definition

but it still uses too many low-level details

⚫ Future improvement steps:

– Offer more user-friendly constructs for Problem Definition

– Move declarations of Solver variables and their

relationships into the extended Business Glossary

– Instead of using custom column templates, automatically

generate Solver’s code

– Potential integration with LLMs

© 2023 OpenRules, Inc.
34

Conclusion

⚫ An advanced OpenRules Rule Solver integrates

Rule Engine and Constraint Solver to support

Declarative Decision Modeling:

– Resulting decision models only specify Problem Definition

(“What”)

– Predefined Problem Resolution rules allow a decision

model’s author not to worry about decision search (“How”)

⚫ Side Effects of a new Rule Solver:

– Instead of one possible decision, your decision model can

find multiple and even optimal decisions

– It makes traditional Constraint Solvers business friendlier

using the expressive power of decision tables.

© 2023 OpenRules, Inc.
35

http://rulesolver.com/

© 2023 OpenRules, Inc.

Thank you!

QnA

www.OpenRules.com

	Slide 1
	Slide 2: Motivation
	Slide 3: Decision Modeling - Procedural
	Slide 4: Decision Modeling - Declarative
	Slide 5: Sample Decision Model: Flight Rebooking
	Slide 6: Flight Rebooking: Procedural Approach
	Slide 7: Flight Rebooking: Declarative Approach
	Slide 8: Decision Engine Implementations
	Slide 9: Outline of my presentation
	Slide 10: Rule Engines (within Decision Management Environments)
	Slide 11: Constraint Solvers
	Slide 12: Comparing Rule Engines and Constraint Solvers
	Slide 13: Using Constraint Solver as Rule Engine
	Slide 14: Integration Approach 1: Constraint Solver as a Rule Engine
	Slide 15: Integration Approach 2: Loosely Coupled Rule Engine and Constraint Solver
	Slide 17: Integration Approach 3 (New) Using Rule-based and Constraint-based Decision Tables Together
	Slide 18: Integration Approach 3 (New) Using Rule-based and Constraint-based Decision Tables Together
	Slide 19: Decision Modeling with Rule Solver
	Slide 20: A very simple example: Map Coloring
	Slide 21: What if we have only 3 colors?
	Slide 22: What if we have only 3 colors?
	Slide 23: A more complex example: Where is Zebra?
	Slide 24: Where is Zebra?
	Slide 25: Where is Zebra?
	Slide 26: Where is Zebra?
	Slide 27: Constraint-based Columns for Standard Decision Tables
	Slide 28
	Slide 29: Constraint-based Columns for Standard Decision Tables
	Slide 30: How Rule Solver Is Implemented
	Slide 31: Flight Rebooking Implementation (1)
	Slide 32: Flight Rebooking Implementation (2)
	Slide 33: Flight Rebooking: Defining Penalty Variables
	Slide 34: Future Improvements
	Slide 35: Conclusion
	Slide 36

